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Abstract 

This study deals with the analysis of availability and reliability of hybrid electric vehicles 

(system 1) and plug-in hybrid electric vehicles (system 2). The purpose of this study is to find 

out the opinion of consumers who can afford their own hybrid car. The distribution of failure 

and repair rates is assumed to be exponential. A method of linear differential equations (LDE) 

is used to estimate reliability metrics such as average system failure and steady-state 

availability. Some special cases were evaluated using different values of the failure rates. In 

addition, we examined how the failure rate affected the system performances measures and  

we demonstrated the basic involved concept comparing the results of both systems. The 

results are also presented graphically using MATLAB software. 
 

Keywords: Reliability, Steady -State Availability, Linear Differential Equation, Mean Time to System 

Failure(MTSF). 

1. Introduction 

In the subject of system reliability, a number of authors analyzed and assessed 

reliability matrices, including MTSF, steady-state availability, busy period of 

repairmen, and cost analysis with the Markov renewal process using regeneration 

point approach. In this work, dependability measures are assessed using linear 

differential equations technique. This approach is less complicated than the others, 

and MATLAB software can be used to carry out computations.Many authors 

previously employed linear differential equations techniques to evaluate reliability 

measures for various systems. The availability analysis and reliability measure of two 

non-identical systems were examined by El-Said et al. using the linear differential 

equation [1].El.sherbeny at analysed the behaviour of some industrial systems in light 

of the cost-free warranty policy [2].Gupta and Mittal investigated the stochastic 

behaviour of a two-unit warm standby system with two types of repairmen and 

varying levels of patience time [3]. Mokaddies et al. assessed the reliability and 

availability of two dissimilar-unit cold standby systems with three modes using a 

linear differential equation with no cost-benefit analysis [4]. Gao at el Studied a K-out-

of M+W+C: G mixed standby system with an unreliable repair facility [5]. Uba 

Ahmad Ali et al. evaluated the dependability of a two different unit cold standby 

system with three modes using the Kolmogorov Forward equation approach [6]. 

Yusuf, I.et. al. studied Stochastic Modeling and performance measures of redundant 

system operating in different conditions[9].  Pradeep K. Joshi et al discussed the 



dependability and availability of a two-unit standby redundancy system using the 

linear differential equation solution technique [7].Lane et. al. analysed data from a 

survey of drivers (n = 1080) administered in late 2013 to assess factors that influence 

potential car buyers to consider two different types of plug-in electric vehicles (PEVs) 

in the United States: plug-in hybrid electric vehicles (PHEVs) and battery electric 

vehicles (BEVs) [8].The goal of this study is to investigate the dependability matrices, 

such as MTSF and steady state availability analysis, of a hybrid four-wheeler (system 

1) and plug-in hybrid four-wheeler (system 2) using linear differential equation 

technique. Plug-in hybrid four-wheeler (System 2) is superior to hybrid four-

wheeler(System 1) based on the computation presented in the study regarding the 

influence of the battery charging option and switching.A graphical representation of 

measures of system effectiveness of both the system is also explored. 

2. Model Description and Assumptions 

In this work, two types of electrical vehicles were studied: hybrid electric vehicles 

(system 1) and plug-in hybrid electric vehicles (system 2). 

2.1 Hybrid Electric Vehicle: Hybrid electric vehicles are powered by an internal 

combustion engine and an electric motor which uses energy stored in batteries.A 

hybrid electric vehicle cannot be plugged in to charge the battery. 

 

2.2 Plug in Hybrid Electric Vehicle: Plug in hybrid electric vehicle use batteries 

to power an electric motor, as well as another fuel such as gasoline or diesel to 

power an internal combustion engine or other propulsion sources. PHEV can charge 

their batteries through charging equipment and regenerative braking. 

Throughout the study of research paper, the following assumptions has been made: 

 System 1 (HEV) can generate electricity through regenerative braking rather than 

by plugging into a charging station to recharge the vehicle's battery. 

 The hybrid four-wheeler in system 1 continues to run even if the battery failed. 

 System 2 (PHEV) will only use its internal combustion engine as a backup and will 

be primarily driven by an electric motor.  

 The switch in system 2 (PHEV) is utilized to turn on the petrol supply. 

 System 2 (PHEV) uses an automatic switch to start the engine immediately when 

the battery dies (fails), provided the switch is in working order at the time of need; 

otherwise, the engine won't start until the switch is repaired. 

 System 1 has only two modes, namely failure and normal. 

 System 2 has three operating modes: normal, partial, and failure. 

 Repair is flawless (as good as new) 

 Only one change may be made at a time in a single state. 

 All failure rates and repair rates are constant. 



 Failure and repair rates are followed by an exponential distribution. 

3 Notation and Symbol 

Si : Transition state of the system , i =0,1 , 2 ,3 ,4  

PN –Petrol supply Normal 

BN –Battery fully charged 

BNP –Battery partially charged 

PNP –Petrol supply is partially 

BF-Battery failed. 

PF-Petrol supply failed. 

𝛼 −failure rate of petrol supply 

𝛽 -  failure rate of battery 

𝛼′ -failure rate of petrol when battery already failed 

𝛽′-failure rate of battery when petrol already failed. 

δ-Repair rate of Petrol supply 

𝜆-Repair rate of battery 

𝛿1-rate of charging battery 

𝛼2-rate of completion of battery charging 

𝛼1-rate of filling petrol 

𝜇1-rate of completion of filling petrol 

𝜃-replacement rate of  both petrol &battery 

4 Transition probability of Hybrid Electric Vehicle (System 1) 

Figure 1 shows the transition probability of different states of system 1. 

Up State ;S0≡ ( BN, PN) ,     S1≡( BN, PF)   ,   S2≡( BF, PN)      

Down State ; S3≡( BF, PF)  



 

Figure 1. State Transition Diagram for the system1 

5 Measures of System Effectiveness of System 1  

5.1 Mean time to system failure (MTSF). 

By applying  linear differential equation technique and  above assumptions, the mean time to 

system failure (MTSF) of the proposed system is determined. Define Pi(t) as the probability 

that the system is in state Si at time t, based on Figure 1. Let P(t) represent the probability row 

vector at time t. Consider the inditial conditions as :  

 

The derived system of differential equations is as follows :  

(𝑑𝑝₀(𝑡))/𝑑𝑡 = -(α+β) P0(t)+ δ P1(t)+ 𝜆 P2(t)+ θP3(t)                  

(𝑑𝑝₁(𝑡))/𝑑𝑡= -(𝛽^′+ δ)P1(t)+ α P0(t)  

(𝑑𝑝₂(𝑡))/𝑑𝑡= -(𝛼^′ + 𝜆 )P2(t) + βP0(t)     

(𝑑𝑝₃(𝑡))/𝑑𝑡= - θ P3(t) +𝛽^′ P1(t) +𝛼^′ P2(t) 

which can be expressed in matrix form as 

𝑑𝑝(𝑡)

𝑑𝑡
 = A P 

(2) 

where 

A =

[
 
 
 
−(𝛼 + 𝛽) 𝛿 𝜆 𝜃

𝛼 −(𝛽′ + 𝛿) 0 0

𝛽 0 −(𝛼′ + 𝜆) 0

0 𝛽′ 𝛼′ −𝜃]
 
 
 

 

 

 

We eliminate the rows and columns of the absorption state of the matrix A and transpose it to 

create a new matrix called Q because evaluating the transition solution is difficult. The 

expected time to reach an absorbing state is determined from 

P(0)= [ P0 (0), P1 (0), P2 (0), P3 (0)],  = [ 1, 0 , 0 ,0  ]                (1) 



E[TP(0) →(absorbing)] = P(0)∫ 𝑒𝑄𝑡𝑑𝑡
∞

0
 

and 

∫ 𝑒𝑄𝑡𝑑𝑡
∞

0
 = -Q-1,since Q-1< 0 

where 

Q =[

−(𝛼 + 𝛽) 𝛼 𝛽

𝛿 −(𝛽′ + 𝛿) 0

𝜆 0 −(𝛼′ + 𝜆)
] 

 

 

The MTSF can be expressed explicitly as: 

 MTSF1 = 𝐸[𝑇𝑃(0)  → (𝑎𝑏𝑠𝑜𝑟𝑏𝑖𝑛𝑔)] = 𝑃(0)(−𝑄−1) [
1
1
1
] 

 

(3) 

MTSF1=
(𝛼+𝛽1

′)(𝜆+𝛼′)+𝛿(𝜆+𝛼′)+𝛽(𝛿+𝛽′)

𝛼𝛽′(𝜆+𝛼′)+𝛽𝛼′(𝛿+𝛽′)
                                                                           (4) 

 

  

5.2 Steady -State Availability Analysis of the System 1 

The initial condition for the availability analysis in Figure 1 is the same as for the reliability 

case. 

P(0)  = [ P0(0), P1(0), P2(0), P3(0))] = [ 1, 0 , 0 ,0 ]    

The systemof differential equations can be expressed as: 

𝑃̇ =A P 

[

𝑝̇0

𝑝̇1

𝑝̇2

𝑝̇3

] =

[
 
 
 
−(𝛼 + 𝛽) 𝛿 𝜆 𝜃

𝛼 −(𝛽′ + 𝛿) 0 0

𝛽 0 −(𝛼′ + 𝜆) 0

0 𝛽′ 𝛼′ 𝜃]
 
 
 
[

𝑃0

𝑝1

𝑝2

𝑃3

] 

The steady-state availability is given by 

𝐴𝑇1
(∞) = 1 − 𝑃3(∞)   (5) 

 

In the steady - state availability,the derivatives of the state probabilities become zero so that 

A P(∞) = 0   (6)  

which is in matrix form 



[
 
 
 
−(𝛼 + 𝛽) 𝛿 𝜆 𝜃

𝛼 −(𝛽′ + 𝛿) 0 0

𝛽 0 −(𝛼′ + 𝛼) 0

0 𝛽′ 𝛼′ 𝜃]
 
 
 
[

𝑃0(∞)

𝑃1(∞)
𝑃2(∞)
𝑃3(∞)

] = [

0
0
0
0

]                               (7) 

𝑃0(∞) + 𝑝1(∞) + 𝑃2(∞) + 𝑝3(∞) = 1                                                            (8) 

To get P3(∞) we substitute (8) in one of the redundant rows of (7) and use MATLAB to 

obtain  the solution of the following system of linear equations in matrix form  

[

−(𝛼 + 𝛽) 𝛿 𝜆 𝜃

𝛼 −(𝛽′ + 𝛿) 0 0
𝛽 0 −(𝛼 + 1) 0
1 1 1 1

] [

𝑃0(∞)

𝑃1(∞)
𝑃2(∞)
𝑃3(∞)

] = [

0
0
0
1

]                               (9) 

 

The solution of (9) provides the steady - state availability for Figure 1. The explicit 

expression  for 𝐴𝑇1(∞)is : 

𝐴𝑇1
(∞) =

𝛼(𝛼′+𝜆)(𝛽′+𝜃)+(𝛽′+𝛿)(𝛼′𝛽+𝜃𝜆)+𝜃(𝛼′𝛽′+𝛼𝛿)

𝛼(𝛼′+𝜆)(𝛽′+𝜃)+(𝛽′+𝛿)[𝛽(𝛼′+𝜃)+𝜃(𝛼′+𝜆)]
                             (10) 

6. Transition probability of Plug- in hybrid electric vehicle(System 2) 

Figure2 shows the transition probability of different states of system 2. 

Up State ; S0≡ (BN,PN), S1≡ (BNP,PN), S2≡ (BN,PNP), S3≡ (BN,PF) , S4≡ (BF,PN) 

Down  State  𝑆5 ≡ (𝐵𝐹 , 𝑃𝐹) 

 

Figure 2; State transition diagram for the Second system 



7 Measures of System Effectiveness of System 2 

7.1 Mean Time to System Failure 

By applying the linear differential equation technique and the above assumptions, the mean 

time to system failure (MTSF) of the proposed system is determined. Define Pi(t) as the 

probability that the system is in state Si at time t, based on Figure 2. Let P(t) represent the 

probability row vector at time t. Consider the inditial conditions as :  

 

By applying the linear differential equation technique and the aforementioned assumptions, 

the mean time to system failure (MTSF) of the suggested system is determined. Define Pi(t) 

as the probability that the system will be in state Si at time t based on Figure 2. Let P(t) 

represent the probability row vector at time t. Consider the inditial conditions as : 

𝑃(0) = [𝑃0(0), 𝑃1(0), 𝑃2(0), 𝑃3(0), 𝑃4(0), 𝑃5(0)] = [1,0,0,0,0,0]                                   (11) 

The derived system of differential equations is as follows:  

       𝑑𝑝₀(𝑡)

𝑑𝑡
= -(𝛼2 + 𝛼1) P0(t)+𝛿1P1(t)+𝜇1 P2(t)+ 𝛿P3(t) +  𝜆𝑃4(𝑡)+ 𝜃𝑃5(𝑡) 

𝑑𝑝1(𝑡)

𝑑𝑡
= −(𝛽 + 𝛿1)𝑝1(𝑡) + 𝛼2𝑃0(𝑡) 

𝑑𝑃2(𝑡)

𝑑𝑡
= −(𝛼 + 𝜇1)𝑃2(𝑡) + 𝛼1𝑃0(𝑡) 

𝑑𝑃3(𝑡)

𝑑𝑡
= −(𝛽′ + 𝛿)𝑃3(𝑡) + 𝛼𝑃2(𝑡) 

𝑑𝑃4(𝑡)

𝑑𝑡
= −(𝜆 + 𝛼′)𝑃4(𝑡) + 𝛽𝑃1(𝑡) 

𝑑𝑃5(𝑡)

𝑑𝑡
= −𝜃𝑃5(𝑡) + 𝛽′𝑃3(𝑡) + 𝛼′𝑃4(𝑡) 

which can be expressed in matrix form as 

𝑃̇ =A P                                                                           (12) 

Where 



A=

[
 
 
 
 
 
 
−(𝛼2 + 𝛼1) 𝛿1 𝜇1 𝛿 𝜆 0

𝛼2 −(𝛽 + 𝛿1) 0 0 0 0

𝛼1 0 −(𝛼 + 𝜇1) 0 0 0

0 0 𝛼 −(𝛽′ + 𝛿) 0 0

0 𝛽 0 0 −(𝛼′ + 𝜆) 0

0 0 0 𝛽′ 𝛼′ −𝜃]
 
 
 
 
 
 

 

We eliminate the rows and columns of the absorption state of the matrix A and transpose it to 

create a new matrix called Q because evaluating the transition solution is difficult. The 

expected time to reach an absorbing state is determined from 

E[TP(0) →(absorbing)] = P(0)∫ 𝑒𝑄𝑡𝑑𝑡
∞

0
 

and 

∫ 𝑒𝑄𝑡𝑑𝑡
∞

0
 = -Q-1,since Q-1< 0 

where 

Q=

[
 
 
 
 
−(𝛼2 + 𝛼1) 𝛼2 𝛼1 0 0

𝛿1 −(𝛽 + 𝛿1) 0 0 𝛽

𝜇1 0 −(𝛼 + 𝜇1) 𝛼 0

𝛿 0 0 −(𝛽′ + 𝛿) 0

𝜆 0 0 0 −(𝛼′ + 𝜆)]
 
 
 
 

 

MTSF2= E[TP(0) →(absorbing)]=P(0)( -Q-1)

[
 
 
 
 
1
1
1
1
1]
 
 
 
 

                                                                           (13) 

MTSF2=
𝛼2𝛽𝛼′(𝛼+𝜇1)(𝛿+𝛼′)+𝛼1𝛼𝛽′(𝜆+𝛼′)(𝛽+𝛿1)

(𝜆+𝛼′)[(𝛼+𝜇1+𝛼1)(𝛽+𝛿1)(𝛿+𝛽′)+𝛼1𝛼(𝛽+𝑠1)]+𝛼2(𝛿+𝛽′)(𝛼+𝜇1)(𝜆+𝛼′+𝛽)
           (14) 

7.2 Steady -State Availability Analysis of the System  

The initial condition for the availability analysis in Figure 2 is the same as for the reliability 

case. 

𝑃(0) = [𝑃0(0), 𝑃1(0), 𝑃2(0), 𝑃3(0), 𝑃4(0), 𝑃5(0)] = [1,0,0,0,0,0] 

The system  of differential equation can be expressed as 



[
 
 
 
 
 
𝑝̇0

𝑝̇1

𝑝̇2

𝑝̇3

𝑝̇4

𝑝̇5]
 
 
 
 
 

=

[
 
 
 
 
 
 
−(𝛼2 + 𝛼1) 𝛿1 𝜇1 𝛿 𝜆 0

𝛼2 −(𝛽 + 𝛿1) 0 0 0 0

𝛼1 0 −(𝛼 + 𝜇1) 0 0 0

0 0 𝛼 −(𝛽′ + 𝛿) 0 0

0 𝛽 0 0 −(𝛼′ + 𝜆) 0

0 0 0 𝛽′ 𝛼′ −𝜃]
 
 
 
 
 
 

[
 
 
 
 
 
𝑝0

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5]
 
 
 
 
 

 

The steady-state availability is given by 

𝐴𝑇2
(∞) = 1 − 𝑃5(∞)(15)  

In the steady - state availability, the derivatives of the state probabilities become zero so that 

A P(∞) = 0  

which in matrix form 

[
 
 
 
 
 
 
−(𝛼2 + 𝛼1) 𝛿1 𝜇1 𝛿 𝜆 0

𝛼2 −(𝛽 + 𝛿1) 0 0 0 0

𝛼1 0 −(𝛼 + 𝜇1) 0 0 0

0 0 𝛼 −(𝛽′ + 𝑠) 0 0

0 𝛽 0 0 −(𝛼′ + 𝜆) 0

0 0 0 𝛽1 𝛼1 −𝜃]
 
 
 
 
 
 

[
 
 
 
 
 
𝑝1(∞)
𝑝1(∞)

𝑝2(∞)
𝑝3(∞)
𝑝4(∞)
𝑝5(∞)]

 
 
 
 
 

=

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

      (16) 

𝑃0(∞) + 𝑝1(∞) + 𝑃2(∞) + 𝑝3(∞) + 𝑝4(∞) + 𝑝5(∞) = 1                                                      (17) 

To getP5(∞) we substitute (17) in one of the redundant rows of (16) and use MATLAB to 

obtain the solution of the following system of linear equations in matrix form. 

 

[
 
 
 
 
 
−(𝛼2 + 𝛼1) 𝑠1 𝜇1 𝛿 𝜆 0

𝛼2 −(𝛽 + 𝛿1) 0 0 0 0

𝛼1 0 −(𝛼1) 0 0 0

0 0 𝛼 −(𝛽′ + 𝛽) 0 0

0 𝛽 0 0 −(𝛼′ + 𝜆) 0
1 1 1 1 1 1]

 
 
 
 
 

[
 
 
 
 
 
𝑝0(∞)
𝑝1(∞)

𝑝2(∞)
𝑝3(∞)
𝑝4(∞)
𝑝5(∞)]

 
 
 
 
 

=

[
 
 
 
 
 
0
0
0
0
0
1]
 
 
 
 
 

            (18) 

The solution of (18) provides the steady state probabilities in the availability case for Figure 

2.The explicit expression for 𝐴𝑇2(∞) is : 

 
                       𝜃(𝜆 + 𝛼′)(𝛼 + 𝜇1)(𝛽 + 𝛿1)(𝛿 + 𝛽′) + 𝛼2𝜃(𝛼 + 𝜇1)(𝛿 + 𝛽′)(𝜆 + 𝛼′ + 𝛽)

𝐴𝑇2(∞)   =
+𝛼1𝜃(𝜆+𝛼′)(𝛽+𝛿1)(𝛿+𝛽′+𝛼)

2𝛽(𝛿+𝛽′)(𝜃+𝛼′)(𝛼+𝜇1)+𝛼1𝛽′(𝜆+𝛼′)(𝛽+𝛿1)(𝛼+𝜃)+

                     𝛿𝜃(𝛼2 + 𝛽)(𝜆 + 𝛼′)(𝛼 + 𝜇1) + 𝛿1𝜃(𝛿 + 𝛽′)(𝜆 + 𝛼′)(𝛼 + 𝜇1) +

𝛼1𝜃(𝛽 + 𝛿1)(𝜆 + 𝛼′)(𝛼 + 𝛿) + 𝛽′𝜃(𝛼2 + 𝛽)(𝛼 + 𝜇1)(𝜆 + 𝛼′)

 (19) 

8. Result and Discussion 



We plot the MTSF and Steady State Availability for each model versus α and β, respectively, 

while keeping the other parameters fixed atα′=1.5,β′ =1.5, δ =2.5, λ=2, μ1=α2 =2.5, δ1=α1=3, 

θ=3.5 in order to observe the behavior of the system.We take β = 0.4 for the curve against α, 

and we take α = 0.4 in addition to other parameters for the curve against β. 

Table 1The relationship between  first and second system’s availability, MTSF, and failure 

rate "α” 

 

 

 

 

 

 

 

 

Table 2: The relationship between the first and second system's availability, MTSF, and 

failure rate "β” 

 

 

 

 

 

 

 

 

α MTSF1 MTSF2 𝑨𝑻𝟏(∞) 𝑨𝑻𝟐(∞) 

0.1 5.44 17.72 0.904 0.984 

0.2 4.72 14.26 0.907 0.980 

0.3 4.18 12.05 0.910 0.976 

0.4 3.78 10.51 0.912 0.973 

0.5 3.45 9.39 0.915 0.970 

0.6 3.18 8.53 0.917 0.967 

0.7 2.97 7.84 0.918 0.965 

0.8 2.79 7.30 0.921 0.962 

0.9 2.63 6.84 0.923 0.960 

1.0 2.50 6.46 0.924 0.957 

β MTSF1 MTSF2 𝑨𝑻𝟏(∞) 𝑨𝑻𝟐(∞) 

0.1 5.85 46.8 0.975 0.982 

0.2 4.90 29.7 0.953 0.979 

0.3 4.25 22.11 0.932 0.976 

0.4 3.78 17.81 0.913 0.973 

0.5 3.41 15.05 0.894 0.971 

0.6 3.12 13.12 0.870 0.968 

0.7 2.89 11.83 0.860 0.966 

0.8 2.70 10.61 0.840 0.964 

0.9 2.53 9.75 0.830 0.962 

1.0 2.40 9.01 0.820 0.960 



Figure 3;MTSF against α                                       Figure 4; Availability against α 

 

                 Figure 5; MTSF against β                                            Figure 6; availability against β    

 

As the value of α increases, the MTSF and availability of both systems decline, whereas the 

availability of system 1 marginally increases, as seen in figures 3 and 4. The graph makes it 

evident that system 2 has a higher mean time to system failure and availability than system 1. 

The mean time to system failure and availability results for the two systems under study are 

plotted against the failure rate β in Figures 5 and 6.The figure clearly shows that, in 

comparison to system 1, system 2 has a higher mean time to system failure and availability. 

Conclusion 

This work uses Linear Differential Equation Techniques to analyze the availability and 

reliability of suggested systems, namely Plug-in Hybrid Electrical Vehicles (System 2) and 

Hybrid Electrical Vehicles (System 2). The impact of failure rate on both system's MTSF and 

steady state availability is also monitored in order to observe system behavior. From Figures 

3 to 6, we can conclude that plug-in hybrid electrical vehicles (System 2) with switching and 



battery charging options have higher MTSF and availability than Hybrid Electric Vehicles 

(System 1), which do not have battery charging options. Therefore, Plug-in Hybrid Electrical 

Vehicles are preferable to hybrid electric vehicles. 
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